lzth.net
当前位置:首页 >> 等价无穷小公式大全 >>

等价无穷小公式大全

当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)

1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~

当x→0,且x≠0,则x--sinx--tanx--arcsinx--arctanx;x--ln(1+x)--(e^x-1);(1-cosx)--x*x/2;[(1+x)^n-1]--nx;ln(1+x)--x ex-1--x loga(1+x)--x/lna;

利用等价无穷小来求极限是一种很方便的方法,同时等价无穷小的知识也是一元微分学的基础知识之一. 为了用好等价无穷小,记住一些基本的等价无穷小公式是必要的. 当x→0,且x≠0,则 x--sinx--tanx--arcsinx--arctanx; x--ln(1+x)--(e^x-1); (1-cosx)--x*x/2; [(1+x)^n-1]--nx; 注:^ 是乘方,-- 是等价于. 参考资料:《高等数学》

等价无穷小替换公式很多 常用的如下: 还有泰勒公式推导的一些如: x-arcsinx~(x^3)/6tanx-sinx~(x^3)/2e^x-1~xtanx-x~(x^3)/3 等等

等价无穷小常用公式:扩展资料 等价无穷小是无穷小的一种.在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的.等价无穷小也是同阶无穷小.从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式.等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易.求极限时,使用等价无穷小的条件 :1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以.参考资料搜狗百科-等价无穷小

当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2x^2 a^x-1~xlna e^x-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~1/nx loga(1+x)~x/lna

sinx~tanx~asinx~atanx~ln(x+1)~x~e^x-1(x+1)^a=a*x+1 e^x=x+1 a^x=x*lna+1 cosx=1-x^2/2

你用这个极限比上X,就得到一个分式极限,ln(x+(1+x)^(1/2))/x,因为是0/0型,用罗比达法则得到lim(x->0) (1+2x*(1+x))/(x+(1+x)^(1/2)),取X=0,则式子=1,所以是等价.

重要的等价无穷小替换当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)*(x^2)(a^x)-1~x*lna ((a^x-1)/x~lna)(e^x)-1~xln(1+x)~x(1+Bx)^a-1~aBx[(1+x)^1/n]-1~(1/n)*xloga(1+x)~x/lna值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错!(加减时可以整体代换,不能单独代换或分别代换)求极限时要多加注意!

网站首页 | 网站地图
All rights reserved Powered by www.lzth.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com