lzth.net
当前位置:首页 >> x分之lnx的导数是多少 >>

x分之lnx的导数是多少

根据导数的四则运算既有f'(x)=((x)'Inx-(Inx)'x)/x^2=(Inx-1)/x^2 其中导数的除法法则为(f(x)/g(x))'=(f'(x)g(x)-g'(x)f(x))/(g(x))^2 (Inx)'=1/x (x)'=1

y'={lnx*(1/x)}'=1/(x^2)-lnx/(x^2)=(1-lnx)/(x^2)

LnX的导数是1/x,这这样求的: lnx)'=lim(t->0) [ln(x+t)-lnx]/t=lim(t->0) ln[(1+t/x)^(1/t)] 令u=1/t 所以原式=lim(u->∞) ln[(1+1/xu)^u]=lim(u->∞) ln{[(1+1/xu)^(xu)]^(1/x)}=ln[e^(1/x)] 利用两个重要极限之一:lim (1 + 1/x)^x =e ,x→∞ =1/x

y=x^lnx 对数求导法:两边同时取对数得:lny=(lnx)^2 求导得:y'/y=2lnx/x y'=2x^(-1)(lnx)x^lnx y'=2(lnx)x^(lnx-1)

X分之一即X -1次方,它的导数就是-1*X^(-2) x^n的导数就是n*x^(n-1) 那么现在对 -1/x求导,即[-x^(-1)]= -(-1)* x^(-1-1)= x^(-2)=1/x^2 所以-1/x的导数是1/x^2

[ln(1/x)]'=[-lnx]'=-1/x

y'=-lnx/x+1/x=(1-lnx)/x 因为x>0 则看分子符号 定义域是x>0 所以0<x<e,y'>0,递增 x>e是递减 所以x=e 最大值是1/e

ln(x^x)还是(lnx)^x? 前面那个对数公式换成xlnx,然后导数的运算法则得到这个的导数=x'*lnx+x*(lnx)' 得到lnx+1

[图文] 匿名用户 0 最佳答案 本回答由提问者推荐 匿名用户 1级 你想知道的这里都有 已解决问题: 262,007,030 新手帮助 搜狗问问小程序

网站首页 | 网站地图
All rights reserved Powered by www.lzth.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com